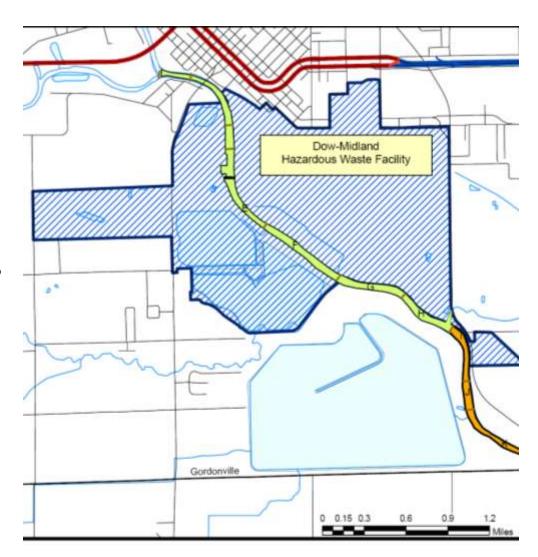
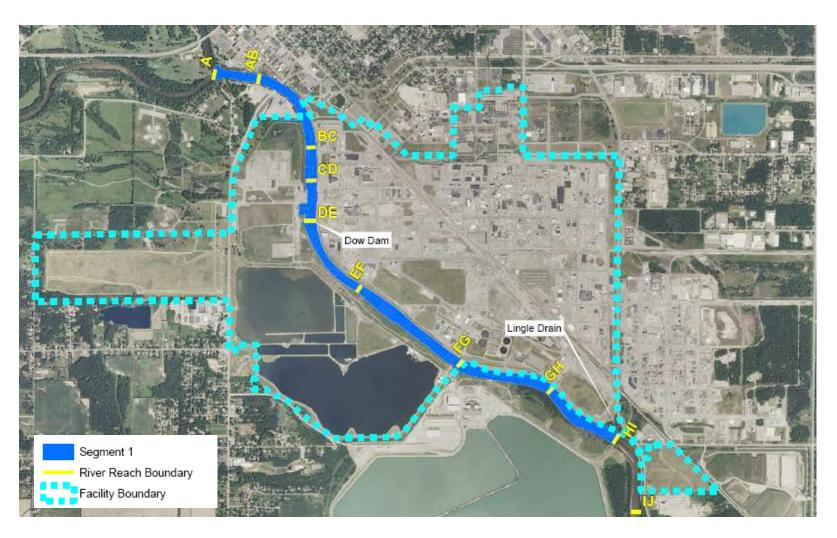
Tittabawassee River, Saginaw River & Bay Site

Segment 1 Developing Cleanup Options

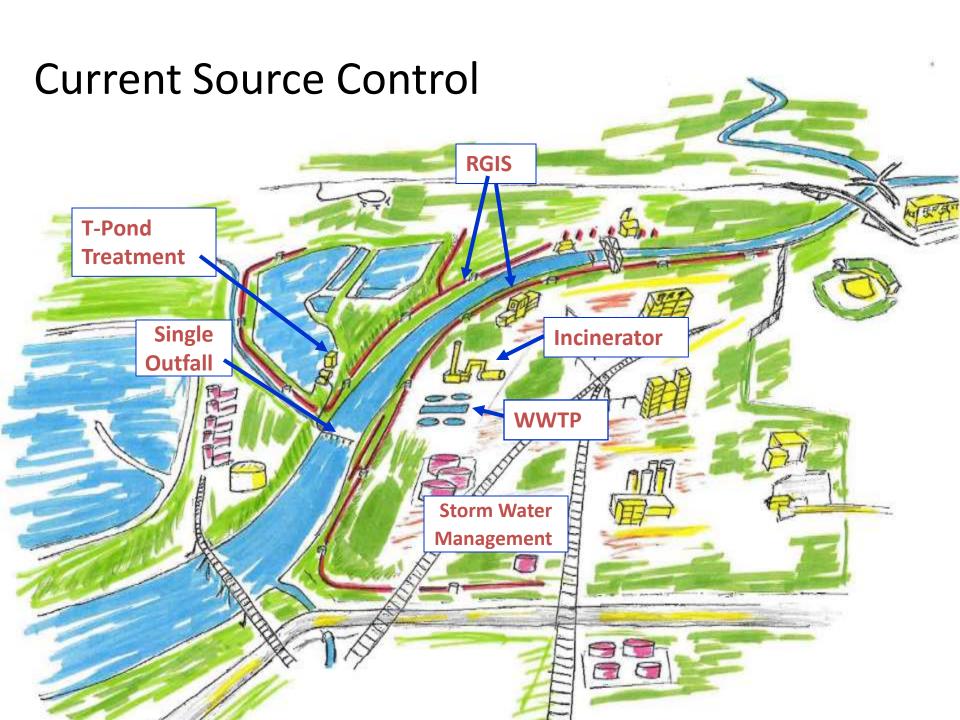

CAG Meeting May 16, 2011

Agenda


- Brief Summary of Segment 1 Conditions
- Sediment Cleanup Options
 - Sediment Management Areas (SMAs)

Segment 1 Overview

- Three miles next to Dow's Midland plant
- Some cleanup has already occurred
- Unique conditions in this segment
- Cleanup options proposed in 2011
- Cleanup expected to begin in 2012



Segment 1 Boundary

Summary of Segment Conditions Site History & Source Control

- Manufacturing operations have occurred nearby since the 1890s
- Contaminated sediment deposits due to historic releases
 - Discharge to the river direct, holding ponds, outfalls
 - Surface water runoff
 - Groundwater
- Waste management systems and source controls now protect the river

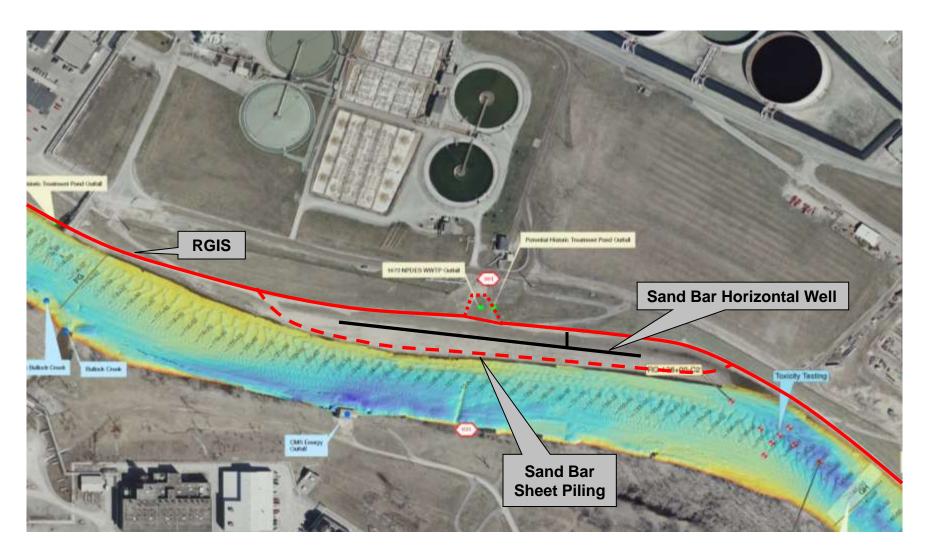
Groundwater Controls

- Plant groundwater is controlled by a system called the Revetment Groundwater Interception System (RGIS)
- RGIS intercepts plant groundwater that would otherwise go to the River
- Performance is continually monitored
- Need to consider RGIS in developing Segment 1 options

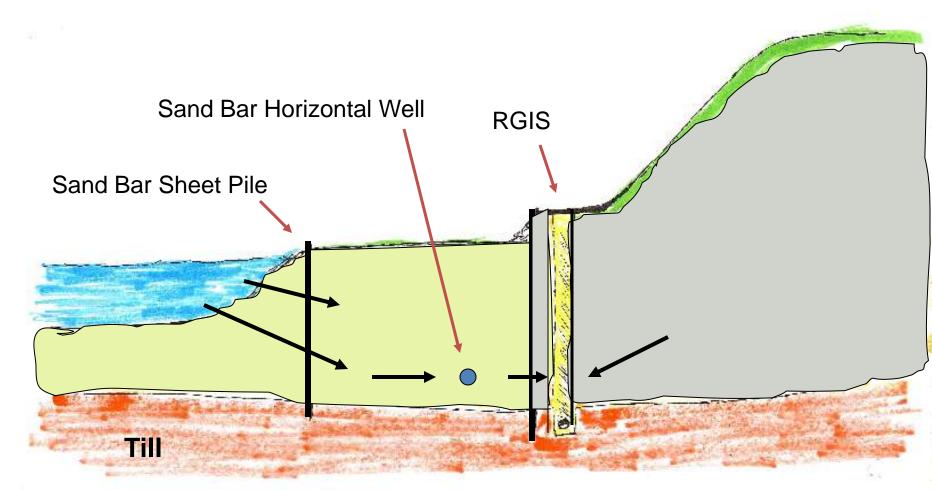
Near-Plant Actions Completed

- Significant cleanups in Segment 1
 - Address dioxin/furans and other chemicals
 - These completed actions help inform future actions in Segment 1

Includes:


- Reach B Removal and capping
- Reach D Dredging, capping and monitored natural recovery
- Reach G Sand Bar Containment, groundwater capture and treatment

Reach G Sand Bar Source Control


- Dense Non-Aqueous Phase Liquid (DNAPL)
 discovered adjacent to a historic outfall on the inside
 of sand bar 1997
- Lateral hydraulic barrier/containment (sheet piling) was installed in 1998

Single horizontal well for hydraulic control installed
 ~12 feet below ground surface within the sand bar

Sand Bar Area

Reach G Sand Bar Area

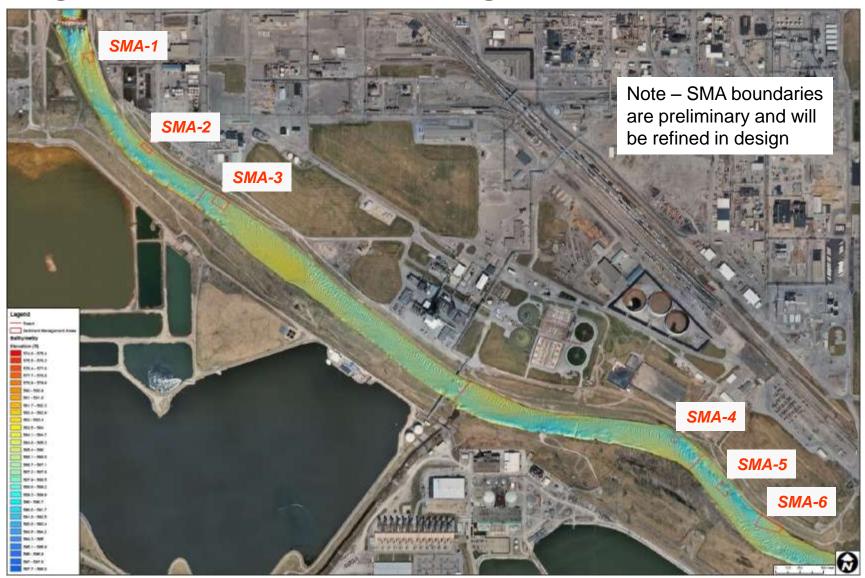
Summary of Segment 1 Conditions Investigation Activities

Extensive investigations since 2006:

- Sediment sampling and analysis
- Sediment stability evaluations
- Biological evaluations
- DNAPL/product investigation

Summary of Segment 1 Conditions Preliminary Findings

- Six chemicals/chemical groups identified as key drivers for Segment 1
 - Chlorobenzenes
 - Chlorophenols
 - Polynuclear Aromatic Hydrocarbons (PAHs)
 - Arsenic
 - Ethyl parathion
 - Ortho-phenylphenol
- These chemicals are not found everywhere and are not always found together


Summary of Segment 1 Conditions Preliminary Findings (cont.)

- DNAPL/recoverable product found in some locations
- Dioxin and furans in Segment 1 were largely addressed by the actions in Reaches B and D
- Specific areas have been identified that will need cleanup options
 - Called "Sediment Management Areas" or "SMAs"
 - Evaluations are ongoing

Summary of Segment 1 Conditions Preliminary Findings (cont.)

- Surface sediment concerns
 - Harm to small invertebrates ("benthos") that live on the river bottom
 - Potential bioaccumulation
- Underlying sediment concerns
 - Potential erosion of cleaner surface that exposes buried contamination
 - Potential contaminant source

Segment 1 Sediment Management Areas

SMA CLEANUP OPTIONS

Segment 1 Potential Options

- Cleanup options will be developed for each Sediment Management Area in Segment 1
- Cleanup options being developed include:
 - Monitored Natural Recovery (MNR)
 - Removal
 - In-place isolation/containment (e.g., capping)
 - Treatment (see next slide)
 - A combination of these

Specialized Options for Segment 1

- Hydraulic containment isolate area and remove and treat contaminated water through RGIS
- Product recovery DNAPL would be removed and treated
- Specialty caps
 - Low permeability
 - Reactive caps that provide some treatment (e.g., organoclay, activated granular carbon)

SMA Groupings for Response Options

 The SMAs have been grouped for response option development because of similarities in conditions and appropriate response options

Groupings:

- SMA 1
- SMAs 2 and 3
- SMAs 4 and 5
- SMA 6

SMA 1 Characteristics

- Concentrations greater than levels potentially toxic to benthos at 0 – 2 ft
 - Arsenic
 - PAHs
- Underlying sediment
 - Sediment thickness to till ~ 6 to 9 ft

SMA 1 Alternatives

- Alt 1: Monitored natural recovery
- Alt 2: In situ containment
 - Sand/gravel cap
- Alt 3: Removal of sediment
 - Sediment removal
 - Dewatering and landfill disposal
 - Sand cover/backfill for residuals management, if needed

SMAs 2 and 3 Characteristics

- Concentrations greater than levels potentially toxic to benthos at 0 – 2 ft
 - SMA 2: chlorobenzenes, chlorophenols
 - SMA 3: chlorobenzenes, chlorophenols, PAHs, orthophenylphenol
- Sediments containing potentially recoverable product overlie till
 - Sediment thickness to till: up to 3.5 ft in SMA 2 and 6.2 ft in SMA 3
 - Site characterization and product recovery pilot testing suggests that there is the potential for recoverable product

SMAs 2 and 3 Response Alternatives

- Alt 1: In situ containment with hydraulic control
 - Lateral containment barrier (sheet piling)
 - Low permeability cap
 - Passive hydraulic control through RGIS
- Alt 2: Product removal/treatment and in situ containment with hydraulic control
 - Same as Alt 1 for containment
 - Removal and treatment of recoverable product
 - Active hydraulic control and treatment through RGIS
- Alt 3: Removal of sediment and post-removal residuals management
 - Sediment removal
 - Dewatering and landfill disposal
 - Reactive (e.g., organoclay) cap for residual management

SMAs 4 and 5 Characteristics

- Concentrations at 0 2 ft are not expected to be toxic to benthos
- Subsurface contaminants/sheen identified above till (mostly chlorobenzenes)
 - Sediment thickness to till: up to 6.5 ft in SMA 4 and 3.1 ft in SMA 5
 - Site characterization and product recovery pilot testing suggests that recoverable product is not present

SMAs 4 and 5 Response Alternatives

- Alt 1: Monitored natural recovery
- Alt 2: In situ containment
 - Erosion protection layer to ensure long-term isolation
- Alt 3: Removal of sediment
 - Sediment removal
 - Dewatering and landfill disposal
 - Sand cover/backfill for residuals management

SMA 6 Characteristics

- Only one nearshore sample greater than levels potentially toxic to benthos at 0 – 2 ft: Ethyl parathion (EP)
- Cleaner sediments overlie deeply buried chlorobenzene deposits
- Subsurface contaminants and product identified above till at ~9 ft (mostly chlorobenzenes)
- Site characterization and product recovery pilot testing suggests that recoverable product is present

SMA 6 Response Alternatives

All – Removal of nearshore surface sediments for EP

- Alt 1: Product removal/treatment and MNR of remainder of SMA
 - Removal and treatment of recoverable product
- Alt 2: Product removal/treatment and in situ containment with hydraulic control of remainder of SMA
 - Removal and treatment of recoverable product
 - Lateral containment barrier
 - Low permeability cap
 - Active hydraulic control and treatment through RGIS
- Alt 3: Removal of sediment
 - Sediment removal
 - Dewatering and landfill disposal
 - Backfill or cap (potentially reactive cap) for residual management

Common Elements of all SMAs

- Continued assurance of source control
- Dewatering and water/product treatment performed as practicable at the Dow facility
- Disposal of materials at approved site(s)
- Construction and post-construction monitoring
- Operation & Maintenance, including O&M of Reach B and D caps
- Remedial Design evaluations, including delineation of footprint and additional product recovery investigation

EPA Policy Statements on Remedy Selection... (2005 Guidance)

- There is <u>no presumptive remedy</u> for any contaminated sediment site, regardless of the contaminant or level of risk
- Generally, dredging, capping and monitored natural recovery (MNR) or a combination of approaches should be evaluated at every site
 - These are all being evaluated for Segment 1

EPA Policy Statements on Remedy Selection... (cont.)

 Both in-place and removal approaches may reach acceptable levels of effectiveness and permanence, depending on site conditions

- Must consider <u>risk reduction</u>:
 - Associated with reduced exposure to contaminants
 - Must consider risks introduced by implementing alternatives
 - Mass removal does not necessarily equate to risk reduction

Upcoming CAG Topics – Segment 1

Over the next few months, we would like to discuss:

- Advantages and limitations of cleanup options that best fit the environmental conditions in Segment 1
- EPA's preferred options
 - Effectiveness
 - Implementability
 - Cost

QUESTIONS?